3.656 \(\int \frac{1}{\sqrt{-\cos (c+d x)} \sqrt{3+2 \cos (c+d x)}} \, dx\)

Optimal. Leaf size=80 \[ \frac{2 \cos ^{\frac{3}{2}}(c+d x) \sqrt{-\tan ^2(c+d x)} \csc (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{2 \cos (c+d x)+3}}{\sqrt{5} \sqrt{\cos (c+d x)}}\right )\right |-5\right )}{d \sqrt{-\cos (c+d x)}} \]

[Out]

(2*Cos[c + d*x]^(3/2)*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[3 + 2*Cos[c + d*x]]/(Sqrt[5]*Sqrt[Cos[c + d*x]])], -5
]*Sqrt[-Tan[c + d*x]^2])/(d*Sqrt[-Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.104798, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {2817, 2815} \[ \frac{2 \cos ^{\frac{3}{2}}(c+d x) \sqrt{-\tan ^2(c+d x)} \csc (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{2 \cos (c+d x)+3}}{\sqrt{5} \sqrt{\cos (c+d x)}}\right )\right |-5\right )}{d \sqrt{-\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-Cos[c + d*x]]*Sqrt[3 + 2*Cos[c + d*x]]),x]

[Out]

(2*Cos[c + d*x]^(3/2)*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[3 + 2*Cos[c + d*x]]/(Sqrt[5]*Sqrt[Cos[c + d*x]])], -5
]*Sqrt[-Tan[c + d*x]^2])/(d*Sqrt[-Cos[c + d*x]])

Rule 2817

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt
[-(d*Sin[e + f*x])]/Sqrt[d*Sin[e + f*x]], Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[-(d*Sin[e + f*x])]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && NegQ[(a + b)/d]

Rule 2815

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Sqrt[a^2]*Sqrt[-Cot[e + f*x]^2]*Rt[(a + b)/d, 2]*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x
]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f*Sqrt[a^2 - b^2]*Cot[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x
] && GtQ[a^2 - b^2, 0] && PosQ[(a + b)/d] && GtQ[a^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-\cos (c+d x)} \sqrt{3+2 \cos (c+d x)}} \, dx &=\frac{\sqrt{\cos (c+d x)} \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{3+2 \cos (c+d x)}} \, dx}{\sqrt{-\cos (c+d x)}}\\ &=\frac{2 \cos ^{\frac{3}{2}}(c+d x) \csc (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3+2 \cos (c+d x)}}{\sqrt{5} \sqrt{\cos (c+d x)}}\right )\right |-5\right ) \sqrt{-\tan ^2(c+d x)}}{d \sqrt{-\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.599877, size = 154, normalized size = 1.92 \[ -\frac{4 \sin ^4\left (\frac{1}{2} (c+d x)\right ) \sqrt{-\cot ^2\left (\frac{1}{2} (c+d x)\right )} \csc (c+d x) \sqrt{-\cos (c+d x) \csc ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{(2 \cos (c+d x)+3) \csc ^2\left (\frac{1}{2} (c+d x)\right )} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{(2 \cos (c+d x)+3) \csc ^2\left (\frac{1}{2} (c+d x)\right )}}{\sqrt{6}}\right )\right |6\right )}{d \sqrt{-\cos (c+d x)} \sqrt{2 \cos (c+d x)+3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-Cos[c + d*x]]*Sqrt[3 + 2*Cos[c + d*x]]),x]

[Out]

(-4*Sqrt[-Cot[(c + d*x)/2]^2]*Sqrt[-(Cos[c + d*x]*Csc[(c + d*x)/2]^2)]*Sqrt[(3 + 2*Cos[c + d*x])*Csc[(c + d*x)
/2]^2]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[(3 + 2*Cos[c + d*x])*Csc[(c + d*x)/2]^2]/Sqrt[6]], 6]*Sin[(c + d*x)/
2]^4)/(d*Sqrt[-Cos[c + d*x]]*Sqrt[3 + 2*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.481, size = 127, normalized size = 1.6 \begin{align*}{\frac{-{\frac{i}{5}}\sqrt{5}\sqrt{2}\sqrt{10} \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{d \left ( -1+\cos \left ( dx+c \right ) \right ) }{\it EllipticF} \left ({\frac{{\frac{i}{5}} \left ( -1+\cos \left ( dx+c \right ) \right ) \sqrt{5}}{\sin \left ( dx+c \right ) }},i\sqrt{5} \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{3+2\,\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{-\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x)

[Out]

-1/5*I/d*5^(1/2)*EllipticF(1/5*I*(-1+cos(d*x+c))*5^(1/2)/sin(d*x+c),I*5^(1/2))*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*10^(1/2)*((3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)/(3+2*cos(d*x+c))^(1/2)*sin(d*x+c)^2/(-1+cos(d*x+c)
)/(-cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-\cos \left (d x + c\right )} \sqrt{2 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-cos(d*x + c))*sqrt(2*cos(d*x + c) + 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-\cos \left (d x + c\right )} \sqrt{2 \, \cos \left (d x + c\right ) + 3}}{2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-cos(d*x + c))*sqrt(2*cos(d*x + c) + 3)/(2*cos(d*x + c)^2 + 3*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \cos{\left (c + d x \right )}} \sqrt{2 \cos{\left (c + d x \right )} + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-cos(d*x+c))**(1/2)/(3+2*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(-cos(c + d*x))*sqrt(2*cos(c + d*x) + 3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-\cos \left (d x + c\right )} \sqrt{2 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-cos(d*x + c))*sqrt(2*cos(d*x + c) + 3)), x)